A nonlinear model of the dynamics of radial dislocations in microtubules
نویسندگان
چکیده
We have established a new dynamical model of microtubules based on their intrinsic dipolar character. The model assumes a single angular degree of freedom per dimer describing the conformational displacements of constituent dimers in radial direction. A corresponding nonlinear dynamical equation of motion is solved both analytically, using the simplest equation method, and numerically. It is shown by both approaches that kink solitons could be elicited and sustained to propagate along the microtubule. We suggest that this model could explain some dynamical functional properties of microtubules, including the triggering of the onset of their depolymerization. 2014 Published by Elsevier Inc.
منابع مشابه
Microtubules Nonlinear Models Dynamics Investigations through the exp( - ()) -Expansion Method Implementation
In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs) describing microtubules, by implementing the expp ́Φpξqq-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملInfluence of taxol and CNTs on the stability analysis of protein microtubules
Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...
متن کاملNanobiomechanical Properties of Microtubules
Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...
متن کاملDynamic Simulation and Mechanical Properties of Microtubules
This work is conducted to obtain mechanical properties of microtubule. For this aim, interaction energy in alpha-beta, beta-alpha, alpha-alpha, and beta-beta dimers was calculated using the molecular dynamic simulation. Force-distance diagrams for these dimers were obtained using the relation between potential energy and force. Afterwards, instead of each tubulin, one sphere with 55 KDa weight ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 237 شماره
صفحات -
تاریخ انتشار 2014